4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
热卖商品
新闻详情
第七节 其他植物生长物质
来自 : www.renrendoc.com/paper/940697 发布时间:2021-03-25

《第七节 其他植物生长物质》由会员分享,可在线阅读,更多相关《第七节 其他植物生长物质(99页珍藏版)》请在人人文库网上搜索。

1、第七节 其他植物生长物质,油菜素内酯(brassinosteroids, BA) 茉莉酸(酯)(jasminate, JA) 水杨酸(酯) (salicylic acid, SA) 独脚金内酯(strigolactons, SL ) 一氧化氮(NO) 多胺(polyamines) 系统素(systemin) 寡糖素(oligosaccharides ) FT蛋白(FT protein) ,油菜素内脂Brassinosteroid,BR的发现 BR的化学结构 BR的生物合成 BR的生理作用 BR的作用机制 BR的商业应用,Discovery of Brassinosteroids,Mitchel。

2、l(1971)从油菜(Brassica napus)花粉中分离出的,在利用菜豆第二节间进行的生物试验中表现了极高的生物活性; Grove(1979)确定了油菜素的结构,并定名为油菜素内酯(brassinolide, BR)。 日本科学家又从许多植物中分离的多种油菜素内酯类似物(brassinosteroid),目前已知的天然油菜素内酯类化合物有60余种(Fujioka and Sakurai, 1997)。 1998年第十三届国际植物生长物质年会上被正式确认为第六类植物激素。,Bean second internode bioassay,油菜素内酯的化学结构,Brassinolide,拟南芥油。

3、菜素内酯突变体,wild,dim,det2,6,BR biosynthesis mutants: det2,DET2 encodes a reductase that acts in the BR biosynthetic pathway. A det2 mutant (loss of DET2 function) is dwarf in size,7,BRI1 is the receptor of BRs (binds to BRs) A bri1 mutant (loss of BRI1 function) is dwarf in size.,WT,bri1 (the dwarf phen。

4、otype can not be rescued),BR signaling mutants: bri1,油菜素内酯的生物合成(一),菜油甾醇,油菜素内酯生物合成(二),氢化菜油甾醇,长春花甾酮,粟甾酮,油菜素内酯的代谢,粟甾酮,缓效油菜素内酯,12,Function of Brassinosteroids,Cell division, elongation, and differentiation,Promote leaf expansion Promote stem and pollen elongation Promote vascular tissue differentiation 。

5、Promote yields for grains and fruit crops Promote resistance to drought and cold,油菜素内酯的生物测定,LRR = Leucine-rich repeat,The Domain structure of the BRI1 receptor,Plant receptor-like kinases,Brassinosteroid (BR) signal transduction pathway. The receptor BRI1 is localized on the plasma membrane (PM). Th。

6、e extracellular region consists of a coiled stretch of leucine rich repeat (LRR) sequences containing an island domain (ID) that functions as part of the brassinolide (BL) binding site. The intracellular portion contains a kinase domain (KD) and the C-terminal tail (CT). Signal perception occurs at 。

7、the cell surface and results in changes in BR-regulated gene expression. BRRE, brassinoisteroid response element. (After Jiang et al. 2013.),水杨酸 salicylic acid,水杨酸的发现 水杨酸的结构 水杨酸的生物合成 水杨酸的运输和代谢 水杨酸的生理功能 水杨酸的应用,水杨酸的发现,1763年英国的斯通(E.Stone) ,柳树皮有很强的收敛作用,可以治疗疟疾和发烧。后来发现这是柳树皮中所含的大量水杨酸糖苷在起作用。 阿斯匹林(aspirin)药物。

8、的问世。阿斯匹林即乙酰水杨酸(acetylsalicylic acid),在生物体内可很快转化为水杨酸(salicylic acid,SA。 20世纪60年代后,人们开始发现了SA在植物中的重要生理作用。,水杨酸的化学结构,水杨酸 Salicylic acid,Proposed salicylic acid biosynthetic pathways in plants,Proposed pathway for SA biosynthesis through isochorismate synthase (异分支酸合成酶)(ICS). In bacteria, this pathway als。

9、o requires pyruvate lyase (PL; PchB inP. aeruginosa)11. The previously described pathway of SA biosynthesis from PAL and benzoic acid-2-hydroxylase (BA2H) is also shown. AS, anthranilate synthase; CM, chorismate mutase.,From the following article: Isochorismate synthase is required to synthesize sal。

10、icylic acid for plant defence Nature414, 562-565(29 November 2001),氨基苯甲酸,肉桂酸,Effect of constitutive SA synthesis in plants on TMV lesion size.A control P12 plant (left) and assentCsspmsBplant of line 16 (right) was inoculated with TMV. Lesions are shown four days after inoculation.,Nature Biotechnol。

11、ogy18, 779 - 783 (2000),plantsssentC(1),pmsB(2),sspmsB(3),ssentCpmsB(4), andssentCsspmsB(5). 35S, CaMV 35S promoter; PIt, proteinase inhibitor terminator; ss, chloroplast targeting signal;entC, ICS gene;pmsB, IPL gene.,NahG, a bacterial gene from Pseudomonas putida, encodes an enzyme that converts s。

12、alicylate (SA) to the defence-inactive compound catechol. Transgenic plants expressing this gene have been used to demonstrate the central role of SA in local and systemic acquired resistance.,Salicylate Hydroxylase,儿茶酚,Proposed model of SA homeostasis and regulation. Free salicylic acid is biologic。

13、ally active. It is synthesized in the chloroplast in response to biotic and abiotic oxidative stress via isochorismate synthase 1 (ICS1). As free SA is cytotoxic, SA accumulates predominantly as the SA-2-o-B-D-glucoside in the plant vacuole. Hydrolysis of SAG to free SA upon subsequent infection res。

14、ults in rapid induction of defense responses and systemic acquired resistance. Controls over SA transport, conjugation, and hydrolysis are essential to its function as a phytohormone.,水杨酸的运输Initial pathogen infection may increase resistance to future pathogen attack through development of SAR,水杨酸的生理。

15、功能,水杨酸诱导抗病性 水杨酸的生热效应 水杨酸的其他功能,水杨酸的生热效应calorigen,佛焰花序,Voodoo Lily,水杨酸的其他功能,Effect of Salicylic Acid (SA) pre-treatment on the cold tolerance of maize seedlings,Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance,Park et al 2007 Science 318: 113,32,Dan Klessig, Sang-Wo。

16、ok Park and Evans Kaimoyo examine a tobacco plant that was infected with tobacco mosiac virus during their study; their study lead to identification of an elusive signal for triggering plant-wide immunity. The signal is methyl salicylate, an aspirin-like compound.,水杨酸诱导植物抗病性的分子机制,Perception and sign。

17、aling,Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Metraux, J.P. and Ryals, J.A. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. 3: 1085-1094.,ICS1 EDS1 PAD4 NPR1 Several WRKYs (tr。

18、anscription factors),Many genes respond to SA: Early genes amplify the signal,Early,Late,Adapted from van den Burg, H.A., and Takken, F.L.W. (2009). Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci. 14: 286-294.,ICS1,NPR1,PR-1 PR-5 BGL2 NIMIN1 ATNUDT6 FRK1 Several WRKYs 。

19、(transcription factors),NPR1 is a major activator of SA-mediated responses,Delaney, T.P., Friedrich, L., and Ryals, J.A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92: 6602-6606 copyright 1995 Nationa。

20、l Academy of Sciences USA.,Plants were treated with SA, then three days later challenged with a fungal pathogen (Hyaloperonospora arabidopsidis),NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1) is necessary for defense responses and at the core of SA signal transduction,NPR1 is necessary and suffi。

21、cient for downstream signaling and defense,Reprinted from Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57-63 with permission from Elsevier; Cao,。

22、 H., Li, X., and Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95: 6531-6536 copyright National Academy of Sciences, USA.,Loss of function: more susceptible,Gain of functi。

23、on: more resistant,NPR1 oligomerizes via redox-sensitive cysteines,Monomeric NPR1 is imported into the nucleus (here it is GFP-labeled),SA,NPR1,Kinkema, M., Fan, W., and Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12: 2339-2350.,NPR1, NP。

24、R3 and NPR4 have recently been reported as SA receptors,In mid-2012, two groups reported that members of the NPR family serve as SA receptors,Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Zheng, N. and Dong, X. (2012) NPR3 and NPR4 are receptors for the immune s。

25、ignal salicylic acid in plants. Nature (in press) doi:10.1038/nature11162.,The two groups used different assays to characterize SA binding, leading to different conclusions,Model: NPR3 and NPR4 regulate the proteolytic turnover of NPR1,Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Moha。

26、n, R., Spoel, S.H., Zheng, N. and Dong, X. (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature (in press) doi:10.1038/nature11162.,NPR1 binds SA, triggering a conformational change that releases its C-terminal activation domain from inhibition to trigger transcr。

27、iption,Wu, Y., Zhang, D., Chu, J.Y., Boyle. P., Wang, Y., Brindle, I.D., De Lucy, V. and Desprs, C. (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1: 639-647.,Model: NPR1 itself is activated by binding to SA,In the nucleus, SA-activated NPR1。

28、 promotes transcription,NPR1 binds TGA transcription factors and promotes DNA binding,Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. 。

29、Proc. Natl. Acad. Sci. USA 96: 6523-6528; Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. (2000). The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279-290.,Yeast-two hybrid assay showing NP。

30、R1/ TGA interaction,NPR1,+TGAs,NPR1,+TGAs,Free DNA,Bound DNA,The Arabidopsis genome encodes 10 TGA factors. Some are positive and some negative regulators of defense genes,TGA2 is both a repressor and an activator of transcription,Boyle, P., Le Su, E., Rochon, A., Shearer, H.L., Murmu, J., Chu, J.Y.。

31、, Fobert, P.R., and Despres, C. (2009). The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21: 3700-3713.,NPR1-binding to TGA2 masks its repressor domain and activates transcription,Actigard有效成分: BTH,茉。

32、莉酸Jasmonic acid,茉莉酸的结构 茉莉酸的生物合成 茉莉酸的运输和代谢 茉莉酸的生理功能 茉莉酸的应用,Jasmonates include jasmonic acid (JA) and derivatives,Biosynthesis of jasmonic acid,Linolenic acid (18:3) is released from membrane lipids and then converted into JA,OPDA,cis(+)-12-oxophytodienoic acid,Linolenic acid 3D,Lipases release the fa。

33、tty acids for the jasmonate biosynthesis,Conversion of linolenic acid to jasmonic acid,Conversion of linolenic acid to jasmonic acid,Jasmonate synthesis occurs in the plastid, peroxisome and cytoplasm,-linolenic acid,Cytochrome P450 inactivates JA-Ile,Cytochrome P450 CYP94B3 mediates catabolism and 。

34、inactivation of JA-Ile,Koo, A.J., Cooke, T.F., Howe, G.A. (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc. Natl. Acad. Sci. USA 108: 9298-9303.,Precursor,Active,Inactive,Loss-of-function mutant cyp94b3-1 accumulates JA-Ile,Inhibit。

35、s: seed and pollen germination root growth exogenous application decreases expression of genes associated with photosynthesis Stimulates: plant defenses against microbial and insect pathogens wound responses ripening,Jasmonic acid mediated physiological responses,Jasmonic acid is involved in defense。

36、 against insects and microbes,Schematic of the three-sided antagonistic signaling network between plant hormones in stress responses,Coronatine is a bacterial compound and powerful jasmonate mimic,Reprinted from Weiler, E.W., Kutchan, T.M., Gorba, T., Brodschelm, W., Niesel, U., and Bublitz, F. (199。

37、4). The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Letters 345: 9-13 with permission from Elsevier. Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., Nan, F., Wang, Z., and Xie, D. (2009). The Arabidopsis CORO。

38、NATINE INSENSITIVE1 protein Is a jasmonate receptor. Plant Cell 21: 2220-2236.,Coronatine stimulates JA responses, suppressing SA response,The Arabidopsis mutant coi1 is insensitive to coronatine and MeJA,Feys, B., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis mutants selected。

39、 for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6: 751-759.,COI1 is an F-box protein very similar to the auxin receptor TIR1,Reprinted from Katsir, L., Chung, H.S., Koo, A.J.K., and Howe, G.A. (2008). J。

40、asmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11: 428-435, with permission from Elsevier.,This similarity suggests a mode of action!,COI1 is a component of the SCF ubiquitin ligase complex SCFCOI1,The jasmonate signaling pathway,The jasmonate signaling pathway。

41、,The jasmonate signaling pathway,(a) SA mediates a change in the cellular redox potential, resulting in the reduction of the NPR1 oligomer to its active monomeric form. Monomeric NPR1 is then translocated into the nucleus where it functions as a transcriptional co-activator of SA-responsive genes, s。

42、uch as PR-1, by enhancing the binding of TGA transcription factors to SA-responsive promoter elements4, 30. (b) In the JA signaling cascade, the E3 ubiquitin ligase SCFCOI1 complex and jasmonate ZIM-domain (JAZ) proteins form a complex that represses transcription of JA-responsive genes49. Upon accu。

43、mulation of JA, JA-isoleucine (JA-Ile) binds to the F-box protein COI1 in the SCFCOI1 complex, after which the JAZ proteins are ubiquitinated and subsequently degraded through the 26S proteasome. This results in the activation of JA-responsive genes through the action of transcription factors such a。

44、s MYC2, ERF1 and ORA59 (refs. 63,77). (c) In the ET signaling cascade, the gaseous hormone ET is perceived by plasma membrane receptors such as ETR1 (ref. 48). Genetically, these receptors are negative regulators of the ET response, because in the absence of ET they maintain the negative regulatory 。

45、role of CTR1, which represses the positive regulator EIN2. Upon perception of ET, the repression of ET signaling by CTR1 is relieved, allowing downstream signaling through EIN2. Subsequently, critical positive regulators of ET-responsive gene expression, such as EIN3, become active because the E3 ub。

46、iquitin ligase SCFEBF1/2-dependent 26S proteasome degradation of these proteins becomes inhibited. EIN3-like transcription factors activate transcription factors such as ERF1, resulting in the expression of downstream ET-responsive genes.,Simplified schematic representation of the SA, JA and ET sign。

47、aling pathways,STRIGOLACTONES,www.plantcell.org/cgi/doi/10.1105/tpc.109.tt0411,Orobanche (broomrape)-infested carrot field,Photo credit Shmuel Golan courtesy of Yaakov Goldwasser,Striga asiatica,Image courtesy of Prof. Julie Scholes Delaux, P.-M., et al., (2012). Origin of strigolactones in the gree。

48、n lineage. New Phytol. 195: 857-871; Proust, H., et al., (2011). Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development. 138: 1531-1539.,Synthesis and transport,In a search for stimulators of Striga germination, strigolacton。

49、es were purified from cotton roots in 1966 and the chemical structure determined in 1972,Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E., and Egley, G.H. (1966). Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Science 154: 1189-1190; Reprinted with p。

50、ermission from Cook, C.E., Whichard, L.P., Wall, M., Egley, G.H., Coggon, P., Luhan, P.A., and McPhail, A.T. (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J. Am. Chem. Soc. 94: 6198-6199.,Strigolactones (SLs) are a small f。

51、amily of compounds,Reprinted from Humphrey, A.J., and Beale, M.H. (2006). Strigol: Biogenesis and physiological activity. Phytochemistry 67: 636-640 with permission from Elsevier; See also Boyer, F.D., et al. and Rameau, C. (2012). Structure-activity relationship studies of strigolactone-related mol。

52、ecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159: 1524-1544.,The stimulator of Striga germination derives from the carotenoid pathway,Matusova, R., Rani, K., Verstappen, F.W.A., Franssen, M.C.R., Beale, M.H., and Bouwmeester, H.J. (2005). The str。

53、igolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139: 920-934.,Genes involved in SL biosynthesis were identified by genetic methods,Reprinted from Booker, J., et al. (2004). MAX3/CCD7 is a carotenoid cleavage d。

54、ioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232-1238 with permission from Elsevier; Morris, S.E., et al. (2001). Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126: 1205-1213; Ishikaw。

55、a, S., et al. (2005). Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46: 79-86 by permission of the Japanese Society of Plant Physiologists. Simons, J.L., et al. (2007). Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary。

56、 branching. Plant Physiol. 143: 697-706.,Proposed SL biosynthesis pathway,Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., and Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant ho。

57、rmones. Nature 455: 195-200.; Seto Y, Kameoka H, Yamaguchi S, Kyozuka J. (2012) Recent advances in strigolactone research: chemical and biological aspects. (in press). Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., and Al-Babili, S.。

58、 (2012). The path from -carotene to carlactone, a strigolactone-like plant hormone. Science. 335: 1348-1351.,Arabidopsis SL biosynthesis mutants are rescued by SL,Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozu。

59、ka, J., and Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195-200; Seto Y, Kameoka H, Yamaguchi S, Kyozuka J. (2012) Recent advances in strigolactone research: chemical and biological aspects. (in press).,MAX1,MAX4,MAX3,SL synthesis in root or shoot。

60、 is sufficient to control shoot branching,Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P., and Leyser, O. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived br。

61、anch-inhibiting hormone. Developmental Cell 8: 443-449.,Synthesis - summary,Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., and Al-Babili, S. (2012). The path from -carotene to carlactone, a strigolactone-like plant hormone. Science.。

62、 335: 1348-1351.,SLs are derived from carotenoids; Early steps occur in the plastids of root and shoot,Auxin downregulates cytokinin synthesis,Auxin upregulates strigolactone synthesis,Hayward, A., Stirnberg, P., Beveridge, C., and Leyser, O. (2009). Interactions between auxin and strigolactone in s。

63、hoot branching control. Plant Physiol. 151: 400-412.,These interlocking networks provide for local and systemic responses,Nutrient control of branching,Strigolactones suppress shoot branching in low phosphorous,Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N., and Yamaguchi, S. (2010). Contrib。

64、ution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51: 1118-1126.,Strigolactones suppress development of adventitious roots,Rasmussen, A., Mason, M.G., De Cuyper, C., Brewer, P.B., Herold, S., Agusti, J., Geelen, D., Greb, T., Go。

65、ormachtig, S., Beeckman, T. and Beveridge, C.A. (2012). Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 158: 1976-1987.,A. SL mutants of Arabidopsis show enhanced development of adventitious roots. B. Development of adventitious roots is supressed in wild-type and。

66、 mutant with SL application in a dose-dependent manner.,A. SL mutants of pea also show enhanced development of adventitious roots. B-C. Cuttings of wild-type (B) show development of less adventitious roots than the rms5 synthesis mutant (C).,Strigolactones stimulate auxin-dependent secondary growth,Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E.A., Brewer, P.B., Beveridge, C.A., Sieberer, T., Sehr, E.M., and Greb, T. (2011). Strigolact。

展开阅读全文

本文链接: http://ssentc.immuno-online.com/view-721640.html

发布于 : 2021-03-25 阅读(0)
公司介绍
品牌分类
联络我们
服务热线:4000-520-616
(限工作日9:00-18:00)
QQ :1570468124
手机:18915418616
官网:http://